Go 入门指南 Go 入门指南
文档 GitHub
译者 GitHub
文档 GitHub
译者 GitHub
  • 前言
  • 学习 Go 语言

    • 第1章:Go 语言的起源,发展与普及

      • 1.1 起源与发展
      • 1.2 语言的主要特性与发展的环境和影响因素
    • 第2章:安装与运行环境

      • 2.1 平台与架构
      • 2.2 Go 环境变量
      • 2.3 在 Linux 上安装 Go
      • 2.4 在 Mac OS X 上安装 Go
      • 2.5 在 Windows 上安装 Go
      • 2.6 安装目录清单
      • 2.7 Go 运行时 (runtime)
      • 2.8 Go 解释器
    • 第3章:编辑器、集成开发环境与其它工具

      • 3.1 Go 开发环境的基本要求
      • 3.2 编辑器和集成开发环境
      • 3.3 调试器
      • 3.4 构建并运行 Go 程序
      • 3.5 格式化代码
      • 3.6 生成代码文档
      • 3.7 其它工具
      • 3.8 Go 性能说明
      • 3.9 与其它语言进行交互
  • 语言的核心结构与技术

    • 第4章:基本结构和基本数据类型

      • 4.1 文件名、关键字与标识符
      • 4.2 Go 程序的基本结构和要素
      • 4.3 常量
      • 4.4 变量
      • 4.5 基本类型和运算符
      • 4.6 字符串
      • 4.7 strings 和 strconv 包
      • 4.8 时间和日期
      • 4.9 指针
    • 第5章:控制结构
      • 5.1 if-else 结构
      • 5.2 测试多返回值函数的错误
      • 5.3 switch 结构
      • 5.4 for 结构
      • 5.5 break 与 continue
      • 5.6 标签与 goto
    • 第6章:函数(function)
      • 6.1 介绍
      • 6.2 函数参数与返回值
      • 6.3 传递变长参数
      • 6.4 defer 和追踪
      • 6.5 内置函数
      • 6.6 递归函数
      • 6.7 将函数作为参数
      • 6.8 闭包
      • 6.9 应用闭包:将函数作为返回值
      • 6.10 使用闭包调试
      • 6.11 计算函数执行时间
      • 6.12 通过内存缓存来提升性能
    • 第7章:数组与切片
      • 7.1 声明和初始化
      • 7.2 切片
      • 7.3 For-range 结构
      • 7.4 切片重组 (reslice)
      • 7.5 切片的复制与追加
      • 7.6 字符串、数组和切片的应用
    • 第8章:Map
      • 8.1 声明、初始化和 make
      • 8.2 测试键值对是否存在及删除元素
      • 8.3 for-range 的配套用法
      • 8.4 map 类型的切片
      • 8.5 map 的排序
      • 8.6 将 map 的键值对调
    • 第9章:包(package)
      • 9.1 标准库概述
      • 9.2 regexp 包
      • 9.3 锁和 sync 包
      • 9.4 精密计算和 big 包
      • 9.5 自定义包和可见性
      • 9.6 为自定义包使用 godoc
      • 9.7 使用 go install 安装自定义包
      • 9.8 自定义包的目录结构、go install 和 go test
      • 9.9 通过 Git 打包和安装
      • 9.10 Go 的外部包和项目
      • 9.11 在 Go 程序中使用外部库
    • 第10章:结构(struct)与方法(method)

      • 10.1 结构体定义
      • 10.2 使用工厂方法创建结构体实例
      • 10.3 使用自定义包中的结构体
      • 10.4 带标签的结构体
      • 10.5 匿名字段和内嵌结构体
      • 10.6 方法
      • 10.7 类型的 String() 方法和格式化描述符
      • 10.8 垃圾回收和 SetFinalizer
    • 第11章:接口(interface)与反射(reflection)

      • 11.1 接口是什么
      • 11.2 接口嵌套接口
      • 11.3 类型断言:如何检测和转换接口变量的类型
      • 11.4 类型判断:type-switch
      • 11.5 测试一个值是否实现了某个接口
      • 11.6 使用方法集与接口
      • 11.7 第一个例子:使用 Sorter 接口排序
      • 11.8 第二个例子:读和写
      • 11.9 空接口
      • 11.10 反射包
      • 11.11 Printf() 和反射
      • 11.12 接口与动态类型
      • 11.13 总结:Go 中的面向对象
      • 11.14 结构体、集合和高阶函数
  • Go 高级编程

    • 第12章:读写数据

      • 12.1 读取用户的输入
      • 12.2 文件读写
      • 12.3 文件拷贝
      • 12.4 从命令行读取参数
      • 12.5 用 buffer 读取文件
      • 12.6 用切片读写文件
      • 12.7 用 defer 关闭文件
      • 12.8 使用接口的实际例子:fmt.Fprintf
      • 12.9 JSON 数据格式
      • 12.10 XML 数据格式
      • 12.11 用 Gob 传输数据
      • 12.12 Go 中的密码学
    • 第13章:错误处理与测试

      • 13.1 错误处理
      • 13.2 运行时异常和 panic
      • 13.3 从 panic 中恢复 (recover)
      • 13.4 自定义包中的错误处理和 panicking
      • 13.5 一种用闭包处理错误的模式
      • 13.6 启动外部命令和程序
      • 13.7 Go 中的单元测试和基准测试
      • 13.8 测试的具体例子
      • 13.9 用(测试数据)表驱动测试
      • 13.10 性能调试:分析并优化 Go 程序
    • 第14章:协程 (goroutine) 与通道 (channel)

      • 14.1 并发、并行和协程
      • 14.2 协程间的信道
      • 14.3 协程的同步:关闭通道-测试阻塞的通道
      • 14.4 使用 select 切换协程
      • 14.5 通道、超时和计时器(Ticker)
      • 14.6 协程和恢复 (recover)
      • 14.7 新旧模型对比:任务和 worker
      • 14.8 惰性生成器的实现
      • 14.9 实现 Futures 模式
      • 14.10 复用
      • 14.11 限制同时处理的请求数
      • 14.12 链式协程
      • 14.13 在多核心上并行计算
      • 14.14 并行化大量数据的计算
      • 14.15 漏桶算法
      • 14.16 对 Go 协程进行基准测试
      • 14.17 使用通道并发访问对象
    • 第 15 章:网络、模板与网页应用

      • 15.1 tcp 服务器
      • 15.2 一个简单的 web 服务器
      • 15.3 访问并读取页面数据
      • 15.4 写一个简单的网页应用
      • 15.5 确保网页应用健壮
      • 15.6 用模板编写网页应用
      • 15.7 探索 template 包
      • 15.8 精巧的多功能网页服务器
      • 15.9 用 rpc 实现远程过程调用
      • 15.10 基于网络的通道 netchan
      • 15.11 与 websocket 通信
      • 15.12 用 smtp 发送邮件
  • 实际应用

    • 第16章:常见的陷阱与错误

      • 16.1 误用短声明导致变量覆盖
      • 16.2 误用字符串
      • 16.3 发生错误时使用 defer 关闭一个文件
      • 16.4 何时使用 new() 和 make()
      • 16.5 不需要将一个指向切片的指针传递给函数
      • 16.6 使用指针指向接口类型
      • 16.7 使用值类型时误用指针
      • 16.8 误用协程和通道
      • 16.9 闭包和协程的使用
      • 16.10 糟糕的错误处理
    • 第17章:模式

      • 17.1 逗号 ok 模式
      • 17.2 defer 模式
      • 17.3 可见性模式
      • 17.4 运算符模式和接口
    • 第18章:出于性能考虑的实用代码片段

      • 18.1 字符串
      • 18.2 数组和切片
      • 18.3 映射
      • 18.4 结构体
      • 18.5 接口
      • 18.6 函数
      • 18.7 文件
      • 18.8 协程 (goroutine) 与通道 (channel)
      • 18.9 网络和网页应用
      • 18.10 其他
      • 18.11 出于性能考虑的最佳实践和建议
    • 第19章:构建一个完整的应用程序

      • 19.1 简介
      • 19.2 短网址项目简介
      • 版本 1 - 数据结构和前端界面
      • 19.4 用户界面:web 服务端
      • 版本 2 - 添加持久化存储
      • 版本 3 - 添加协程
      • 版本 4 - 用 JSON 持久化存储
      • 版本 5 - 分布式程序
      • 19.9 使用代理缓存
      • 19.10 总结和增强
    • 第20章:Go 语言在 Google App Engine 的使用

      • 20.1 什么是 Google App Engine?
      • 20.2 云上的 Go
      • 20.3 安装 Go App Engine SDK:为 Go 部署的开发环境
      • 20.4 建造你自己的 Hello world 应用
      • 20.5 使用用户服务和探索其 API
      • 20.6 处理窗口
      • 20.7 使用数据存储
      • 20.8 上传到云端
    • 第21章:实世界中 Go 的使用

      • 21.1 Heroku:一个使用 Go 的高度可用一致数据存储
      • 21.2 MROffice:一个使用 Go 的呼叫中心网络电话 (VOIP) 系统
      • 21.3 Atlassian:一个虚拟机群管理系统
      • 21.4 Camilistore:一个可寻址内容存储系统
      • 21.5 Go 语言的其他应用

版本 2 - 添加持久化存储

第 2 个版本的代码 goto_v2 见 goto_v2。

19.5 持久化存储:gob

(本节代码见 goto_v2/store.go 和 goto_v2/main.go。)

当 goto 进程(监听在 8080 端口的 web 服务器)终止,这迟早会发生,内存 map 中缩短的 URL 就会丢失。要保留这些数据,就得将其保存到磁盘文件中。我们将修改 URLStore(),使它可以保存数据到文件,且在 goto 启动时还原这些数据。为此我们使用 Go 标准库的 encoding/gob 包:它用于序列化和反序列化,将数据结构转换为字节数组(确切地说是切片),反之亦然(见 12.11 节)。

通过 gob 包的 NewEncoder() 和 NewDecoder() 函数,可以指定数据要写入或读取的位置。返回的 Encoder 和 Decoder 对象提供了 Encode 和 Decode 方法,用于对文件写入和从中读取 Go 数据结构。提示:Encoder 实现了 Writer 接口,同样 Decoder 实现了 Reader 接口。我们在 URLStore 上增加一个新的 file 字段(*os.File 类型),它是用于读写已打开文件的句柄。

type URLStore struct {
	urls map[string]string
	mu sync.RWMutex
	file *os.File
}

我们把这个文件命名为 store.gob,当初始化 URLStore 时将其作为参数传入:

var store = NewURLStore("store.gob")

接着,调整 NewURLStore() 函数:

func NewURLStore(filename string) *URLStore {
	s := &URLStore{urls: make(map[string]string)}
	f, err := os.OpenFile(filename, os.O_RDWR|os.O_CREATE|os.O_APPEND, 0644)
	if err != nil {
		log.Fatal("URLStore:", err)
	}
	s.file = f
	return s
}

现在,更新后的 NewURLStore() 函数接受一个文件名参数,它会打开该文件(见 12 章),将返回的 *os.File 作为 file 字段的值存储在 URLStore 变量 store 中,即这里的本地变量 s 。

对 OpenFile() 的调用可能会失败(例如文件可能被删除或改名)。它会返回一个错误 err,注意 Go 是如何处理这种情况的:

f, err := os.OpenFile(filename, os.O_RDWR|os.O_CREATE|os.O_APPEND, 0644)
if err != nil {
	log.Fatal("URLStore:", err)
}

当 err 不为 nil,表示确实发生了错误,那么输出一条消息并停止程序执行。这是处理错误的一种方式,大多数情况下错误应该返回给调用函数,但这种检测错误的模式在 Go 代码中也很普遍。在 } 之后可以确定文件被成功打开了。

打开该文件时启用了写入标志,更精确地说是“追加模式”。每当一对新的短/长 URL 在程序中创建后,我们通过 gob 把它存储到文件 "store.gob" 中。

为达到目的,定义一个新的结构体类型 record:

type record struct {
	Key, URL string
}

以及新的 save() 方法,将给定的键和 URL 组成 record ,以 gob 编码的形式写入磁盘。

func (s *URLStore) save(key, url string) error {
	e := gob.NewEncoder(s.file)
	return e.Encode(record{key, url})
}

goto 程序启动时,磁盘上存储的数据必须读取到 URLStore 的 map 中。为此,我们编写 load 方法:

func (s *URLStore) load() error {
	if _, err := s.file.Seek(0, 0); err != nil {
		return err
	}
	d := gob.NewDecoder(s.file)
	var err error
	for err == nil {
		var r record
		if err = d.Decode(&r); err == nil {
			s.Set(r.Key, r.URL)
		}
	}
	if err == io.EOF {
		return nil
	}
	return err
}

这个新的 load() 方法会寻址 (Seek) 到文件的起始位置,读取并解码 (Decode) 每一条记录 (record),然后用 Set 方法将数据存储到 map 中。再次注意无处不在的错误处理模式。文件的解码由一个无限循环完成,只要没有错误就会一直继续:

for err == nil {
	…
}

如果得到了一个错误,可能是刚解码了最后一条记录,于是产生了 io.EOF (EndOfFile) 错误。若并非此种错误,表示产生了解码错误,用 return err 来返回它。对该方法的调用必须加入到 NewURLStore() 中:

func NewURLStore(filename string) *URLStore {
	s := &URLStore{urls: make(map[string]string)}
	f, err := os.OpenFile(filename, os.O_RDWR|os.O_CREATE|os.O_APPEND, 0644)
	if err != nil {
		log.Fatal("Error opening URLStore:", err)
	}
	s.file = f
	if err := s.load(); err != nil {
		log.Println("Error loading data in URLStore:", err)
	}
	return s
}

同时在 Put() 方法中,当新的 URL 对加入到 map 中,也应该立即将它们保存到数据文件中:

func (s *URLStore) Put(url string) string {
	for {
		key := genKey(s.Count())
		if s.Set(key, url) {
			if err := s.save(key, url); err != nil {
				log.Println("Error saving to URLStore:", err)
			}
			return key
		}
	}
	panic("shouldn’t get here")
}

编译并测试这第二个版本的程序,或直接使用现有的可执行程序,验证关闭服务器(在终端窗口可以按 CTRL+C)并重启后,短 URL 仍然有效。goto 程序第一次启动时,文件 store.gob 还不存在,因此当载入数据时会得到错误:

2011/09/11 11:08:11 Error loading URLStore: open store.gob: The system cannot find the file specified.

结束进程并重启后,就能正常工作了。或者,可以在 goto 启动前先创建空的 store.gob 文件。

备注: 当第二次启动 goto 时,可能会产生错误:

Error loading URLStore: extra data in buffer

这是由于 gob 是基于流的协议,它不支持重新开始。在版本 4 中,会用 json 作为存储协议来补救此问题。

链接

  • 目录
  • 上一节:用户界面:web 服务端
  • 下一节:用协程优化性能
Last Updated:
Contributors: Mr.Fang
Prev
19.4 用户界面:web 服务端
Next
版本 3 - 添加协程